Заземление экранов однофазных кабелей 6-10 кВ с изоляцией из сшитого полиэтилена

к.т.н. Дмитриев М.В. (ЗАО «Завод энергозащитных устройств») д.т.н. Евдокунин Г.А (СПбГПУ)

Введение

В журнале «Новости Электротехники» [1] опубликована статья, посвященная проблеме заземления экранов однофазных кабелей с изоляцией из сшитого полиэтилена, дана методика расчета токов и напряжений в экранах, приведен пример ее использования для кабеля 110 кВ. Было показано, что способ заземления экрана кабеля влияет:

- на величину тока в экране в нормальных и аварийных режимах и при неправильном заземлении экрана может привести к повреждению кабеля;
- на электрические потери в экране, а значит на его тепловой режим и пропускную способность;
- на величину напряжения на экране в нормальных и аварийных режимах (при его разземлении), т.е. на надежность работы кабеля и безопасность его обслуживания;
- на основные электрические параметры кабеля (активное и индуктивное сопротивления).

Учитывая повышенный интерес к применению однофазных кабелей 6-10 кВ с изоляцией из сшитого полиэтилена, постепенно вытесняющих из эксплуатации все другие кабели традиционного исполнения, мы решили посвятить этой теме данную публикацию. В статье поясняется механизм появления опасных токов и напряжений в экранах, а также приведены результаты некоторых обобщающих расчетов для однофазных кабелей 6-10 кВ.

Необходимость в публикации также следует из известных нам фактов о неправильном заземлении экранов однофазных кабелей уже находящихся в эксплуатации. В качестве примера приведем результаты прямых измерений токов в экранах кабеля 10 кВ, заземленных в обоих концах согласно нормативным документам (измерения выполнены в одной из энергосистем Центра). Параметры кабеля: сечение жилы 500 мм² и сечение экрана 95 мм², длина 2500 м. При токах 186 А в жилах трех фаз измеренный ток в экране каждой фазы составлял 115 А! В случае выхода указанного кабеля на номинальную нагрузку (ток в жиле около 500 А), ток в экране пропорционально возрастет и составит 310 А, что совершенно недопустимо для сечения экрана 95 мм². В настоящее время от повреждений, вызванных нерасчетным тепловым режимом, рассмотренный кабель спасает лишь его сравнительно малая нагрузка, это же спасает и многие другие неверно спроектированные и уже находящиеся в эксплуатации кабельные линии с однофазными кабелями.

1. Механизм появления токов и напряжений в экранах

Основным назначением экрана является обеспечение равномерности электрического поля, воздействующего на главную изоляцию кабеля (изоляцию «жила-экран»), что достигается только в случае заземления экрана. Для более или

менее простого объяснения механизма возникновения токов в заземленных экранах приведем несколько рисунков и комментарии к ним.

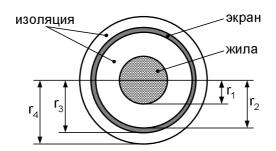


Рис. 1. Однофазный кабель с изоляцией из сшитого полиэтилена.

В начале положим, что имеет место однофазная сеть, т.е. однофазный источник переменной эдс E, однофазный кабель с заземленным экраном (в начале и конце) и нагрузка, имеющая сопротивление Z_{H} (рис.1,2). В токоведущей жиле протекает ток $I_{\mathcal{K}}$, который, пройдя через нагрузку, должен вернуться к источнику E. Для этого у тока есть два пути: пройти по экрану $I_{\mathcal{S}}$ и пройти в толще земли $I_{\mathcal{S}} = I_{\mathcal{K}} - I_{\mathcal{S}}$.

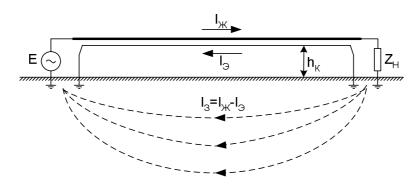


Рис. 2. Однофазная сеть, включающая источник, кабель, нагрузку.

Ток в земле I_3 будет возвращаться из нагрузки в источник, занимая всю толщу земли, протекая как на небольшой глубине, так и на значительной. Несмотря на это, оказывается возможным приближенно считать (рис.3), что весь распределенный в земле ток протекает на одной определенной глубине $D_3 = 2.24 \sqrt{\frac{\rho_3}{\omega \cdot \mu_0}}$, зависящей от частоты тока $\omega = 2\pi f$ и удельного сопротивления грунта ρ_3 (магнитная проницаемость постоянна и равна $\mu_0 = 4\pi \cdot 10^{-7} \; \Gamma \text{H/M}$).

С увеличением частоты тока и снижением сопротивления грунта в толще земли все более заметным окажется поверхностный эффект, из-за которого линии тока (см. рис.2) будут с большой глубины подниматься ближе к поверхности земли, т.е. в условиях рис.3 будет уменьшаться D_3 .

На промышленной частоте f=50 Γ ц и при типовых значениях $\rho_{\scriptscriptstyle 3}=100\div 1000$ $O_{M}\cdot_{M}$ эквивалентная глубина $D_{\scriptscriptstyle 3}$ составляет несколько сотен метров, т.е. оказывается заметно больше высоты $h_{\scriptscriptstyle K}$, на которой относительно

поверхности земли расположен кабель. Расположен ли кабель над землей (в лотке, на эстакаде), как это показано на рис.2, или помещен в землю (в кабельный канал, в полиэтиленовую трубу), в любом случае расстояние $h_{\scriptscriptstyle K}$ от кабеля до поверхности земли будет заметно меньше $D_{\scriptscriptstyle 3}$.

С применением «идеологии D_3 » получается, что токи и напряжения в кабеле на промышленной частоте не зависят о того, размещен ли кабель над землей или в земле. Поэтому, не теряя общности, можно считать, что кабель размещен над землей, и для его расчета пользоваться формулами теории воздушных линий электропередач, т.е. считать один кабель двухпроводной линией (жила и экран), несколько кабелей — многопроводной. Это допущение применено в нашей статье [1] (емкость кабеля, разумеется, вычисляется с учетом того, лежит ли моделируемый кабель в земле или над землей).

Токи, показанные на рис.2 (в жиле, в экране и в земле), можно представить протекающими в двух условных контурах, показанных на рис.3: первый контур образован жилой кабеля и обратным проводом, находящемся на расстоянии D_3 от жилы; второй контур образован экраном кабеля и тем же обратным проводом на расстоянии D_3 от экрана. Таким образом, процессы в однофазном кабеле могут быть пояснены как результат взаимодействия двух указанных на рис.3 контуров (за положительные направления токов, как и в [1], было принято направление от источника к нагрузке).

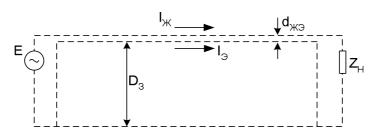


Рис. 3. Однофазная сеть, для которой показаны условные контура с токами.

Уравнения, описывающие взаимодействие контуров рис. 3, следующие:

$$\begin{split} \Delta \dot{U}_{\mathcal{K}} &= \dot{Z}_{\mathcal{K}} \dot{I}_{\mathcal{K}} + \dot{Z}_{\mathcal{K} \ni} \dot{I}_{\ni} \\ \Delta \dot{U}_{\ni} &= \dot{Z}_{\ni} \dot{I}_{\ni} + \dot{Z}_{\mathcal{K} \ni} \dot{I}_{\mathcal{K}} \end{split},$$

где $\Delta \dot{U}_{\mathcal{K}} = \dot{E} - \dot{Z}_H \dot{I}_{\mathcal{K}}$ и $\Delta \dot{U}_{\ni}$ — продольные падения напряжения на жиле и экране; \dot{Z} — комплексные сопротивления, смысл которых пояснен в таблице; $R_{\mathcal{K}}$, R_{\ni} , R_{3} — активные сопротивления жилы, экрана, земли; $L_{\mathcal{K}}$, L_{\ni} — собственные индуктивности жилы, экрана; $M_{\mathcal{K}\ni}$, $M_{\mathcal{K}}$ — взаимная индуктивность жилы и экрана одного и того же кабеля, взаимная индуктивность экрана и соседнего кабеля; $j = \sqrt{-1}$ — мнимая единица.

Собственное сопротивление жилы (Ом)	$\dot{Z}_{\mathcal{K}} = R_{3} + R_{\mathcal{K}} + j\omega L_{\mathcal{K}}$
Собственное сопротивление экрана (Ом)	$\dot{Z}_{\ni} = R_3 + R_{\ni} + j\omega L_{\ni}$

Взаимное сопротивление между жилой и экраном одного и того же кабеля (Ом)	$\dot{Z}_{\mathcal{K}\ni} = R_3 + j\omega M_{\mathcal{K}\ni}$
Взаимное сопротивление жилы (экрана) и соседнего кабеля (Ом)	$\dot{Z}_{K} = R_{3} + j\omega M_{K}$

В случае, когда экран заземлен с обоих концов кабеля, справедливо $\Delta \dot{U}_{\ni} = 0$, и из второго уравнения системы

$$\frac{\dot{I}_{\odot}}{\dot{I}_{\mathcal{K}}} = -\frac{\dot{Z}_{\mathcal{K}\Theta}}{\dot{Z}_{\odot}} = -\frac{R_{3} + j\omega M_{\mathcal{K}\Theta}}{R_{3} + R_{\odot} + j\omega L_{\odot}}$$

Согласно [1] $L_{\ni} = M_{\mathscr{K}\ni} = \frac{\mu_0}{2\pi} \ln \left(\frac{D_3}{r_2}\right)$, т.е. соотношение $\left|\dot{I}_{\ni}/\dot{I}_{\mathscr{K}}\right| < 1$ тем ближе к

единице, чем меньше сопротивление экрана R_9 . Для экранов, сделанных из меди, ток в экране оказывается сопоставимым с током в жиле.

В случае, когда экран заземлен только с одной стороны, справедливо \dot{I}_{\ni} = 0, из системы уравнений найдем падение напряжения на экране

$$\Delta \dot{U}_{\ni} = \dot{Z}_{\mathcal{K}\ni} \dot{I}_{\mathcal{K}},$$

которое, по сути, представляет собой напряжение незаземленного конца экрана относительно земли. Видно, что напряжение на незаземленном экране пропорционально длине кабеля (она скрыта в $\dot{Z}_{_{\mathcal{K}\!\!\!\!>}} = \dot{Z}_{_{\mathcal{K}\!\!\!\!>}}^* \cdot L_{_{\!K}}$) и току в жиле, под которым можно понимать как ток нормального режима (десятки-сотни ампер), так и ток короткого замыкания (тысячи ампер). Ясно, что максимальные токи и напряжения на экране появляются именно при коротких замыканиях на нагрузке $Z_{_H} \approx 0$, т.е. при коротких замыканиях в сети вне кабеля (ведь именно тогда по жиле кабеля пусть кратковременно, но все же протекают значительные токи $\dot{I}_{_{\mathcal{K}}}$). Именно поэтому предложенная в [1] методика включала в себя рассмотрение токов и напряжений для:

- нормального режима работы;
- аварийного режима работы сети (однофазное, трехфазное повреждения изоляции сети вне кабеля).

На рис.2-3 рассматривалась однофазная сеть, однофазный кабель. В случае трехфазной группы однофазных кабелей на ток и напряжения в экране каждой фазы будет влиять не только ток жилы этой фазы, но и токи жил и экранов соседних фаз. Учтем это, для чего обратимся к рис.4.

Уравнения, описывающие взаимодействия кабелей на рис.4, следующие:

$$\Delta \dot{U}_{\mathcal{H}A} = \dot{Z}_{\mathcal{H}} \dot{I}_{\mathcal{H}A} + \dot{Z}_{\mathcal{H}\Theta} \dot{I}_{\mathcal{H}A} + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}B} + \dot{I}_{\mathcal{B}}) + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}C} + \dot{I}_{\mathcal{B}C})$$

$$\Delta \dot{U}_{\mathcal{H}A} = \dot{Z}_{\mathcal{G}} \dot{I}_{\mathcal{H}A} + \dot{Z}_{\mathcal{H}\Theta} \dot{I}_{\mathcal{H}A} + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}B} + \dot{I}_{\mathcal{B}B}) + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}C} + \dot{I}_{\mathcal{B}C})$$

Ранее в однофазной постановке было получено, что для медных экранов $i_{\mathfrak{I}} \approx -i_{\mathfrak{K}}$. Таким образом, справедливо $(i_{\mathfrak{K}B} + i_{\mathfrak{I}B}) \approx 0$ и $(i_{\mathfrak{K}C} + i_{\mathfrak{I}B}) \approx 0$, т.е. фазы «В,С» не могут компенсировать влияние тока жилы фазы «А» на ток в экране фазы «А». Следовательно, рассмотренный на примере однофазного кабеля механизм возникновения токов в экранах остается справедливым и для группы из трех однофазных кабелей.

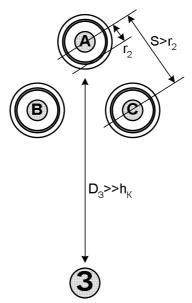


Рис.4. Группа из трех однофазных кабелей типа рис.1.

Согласно [1] имеет место соотношение
$$\frac{\mu_0}{2\pi} \ln \left(\frac{D_3}{r_2} \right) = M_{\mathcal{K}\ni} > M_K = \frac{\mu_0}{2\pi} \ln \left(\frac{D_3}{s} \right)$$
, в

котором расстояние между фазами s больше расстояния r_2 «жила-экран», т.е. соседние фазы не могут полностью компенсировать ток в экране рассматриваемой фазы. Если кабели фаз «А», «В», «С» приближать друг к другу до полного соприкосновения, то можно достичь $s \approx 2r_2$, но все равно это не обеспечит $M_{\mathcal{H}\ni} = M_{\mathcal{K}}$, и никогда соседние фазы не смогут компенсировать токи и напряжения в экранах рассматриваемой фазы.

Итак, токи и напряжения в экранах группы однофазных кабелей зависят от расстояния между кабелями, снижаясь с уменьшением этого расстояния. Размещать соседние кабели вплотную друг к другу нежелательно, исходя из вопросов эффективности охлаждения кабеля. Поэтому заметные токи и напряжения в экранах присущи всем трехфазным группам однофазных кабелей в том случае, когда экраны заземлены с обоих концов кабеля.

Опасных токов и напряжений в экранах не было бы только в том случае, если бы вместо трехфазной группы однофазных кабелей примять трехфазный кабель, имеющий три жилы в одной общей оболочке. Однако современные кабели с изоляцией из сшитого полиэтилена, как правило, однофазные, что справедливо вызывает повышенное внимание к возможным токам в их экранах (и напряжениям на них при их разземлении).

2. Результаты расчетов симметричных режимов для кабелей 6-10 кВ

В расчетах по методике [1] необходимо задание геометрии кабеля (рис.1), которая может быть определена при известных сечениях жилы $F_{\mathbb{R}}$ и экрана $F_{\mathbb{R}}$, а также толщины $d_{\mathbb{R}^{\mathfrak{D}}}$ изоляции «жила-экран»:

$$r_1 = \sqrt{\frac{F_{\mathcal{K}}}{\pi}}, \quad r_2 = r_1 + d_{\mathcal{K}\ni}, \quad r_3 = \sqrt{r_2^2 + \frac{F_{\ni}}{\pi}},$$

где $d_{\kappa = 3.4}$ мм — по каталожным данным для кабелей 6-10 кВ.

Для симметричного режима на рис.5-6 приведены результаты расчетов токов и напряжений экранов для группы из трех однофазных кабелей с сечениями $F_{\mathcal{K}}$ и $F_{\mathcal{H}}$. Они получены по методике, приведенной в [1], и дополнительно проверены при подробном компьютерном моделировании процессов в группе кабелей с помощью канадско-американского комплекса ЕМТР (для автоматизации расчетов токов и напряжений в экранах в настоящее время также разрабатывается компьютерная программа «ЭКРАН»).

На рис.5-6 видно, что токи и напряжения в экранах тем меньше, чем ближе соседние однофазные кабели расположены друг к другу.

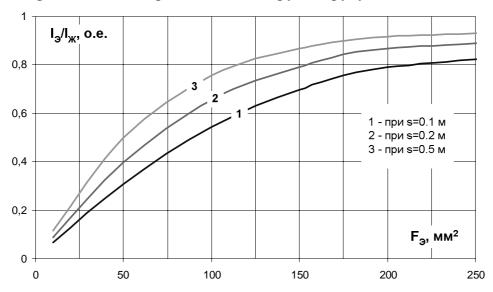


Рис.5. Ток в экране однофазного кабеля по сравнению с током в жиле (в симметричном режиме) в зависимости от сечения экрана F_{\ni} и расстояния s между кабелями (между центрами) соседних фаз. Сечение жилы $F_{\pi} = 500 \, \text{мm}^2$, экран заземлен в обоих концах кабеля.

При сечениях жилы, отличных от $F_{\mathcal{K}} = 500$ мм², соотношение $I_{\odot}/I_{\mathcal{K}}$ согласно расчетам сильно не изменяется (см. таблицу) по сравнению с данными, приведенным на рис.5.

$F_{\mathcal{K}} = 500 \text{ mm}^2$	$I_{\scriptscriptstyle \supset}$ / $I_{\scriptscriptstyle \mathcal{K}}$ показано на рис.5
$F_{\mathcal{K}} = 150 \text{ mm}^2$	$I_{\scriptscriptstyle \supset}$ / $I_{\scriptscriptstyle \mathcal{K}}$ на 5-15% выше, чем на рис.5
$F_{\mathcal{K}} = 50 \text{ mm}^2$	$I_{\scriptscriptstyle \ominus}$ / $I_{\scriptscriptstyle \mathcal{K}}$ на 5-30% выше, чем на рис.5

Уже упоминавшиеся экспериментальные данные, полученные в одной энергосистеме Центра, для кабеля 10 кВ, имеющего $F_{\mathcal{K}}=500$ мм² и $F_{\mathfrak{I}}=95$ мм² при токе в жиле $I_{\mathcal{K}}=186$ А, таковы: ток в экране одной фазы составлял $I_{\mathfrak{I}}=130$ А, в другом $I_{\mathfrak{I}}=100$ А (в третьем экране измерения нельзя было провести из-за ограниченности места в канале). Средний ток в экране оценим как $I_{\mathfrak{I}}=115$ А, что соответствует $I_{\mathfrak{I}}/I_{\mathcal{K}}=115/186=0.62$ и хорошо согласуется с кривыми 1-2 на рис.5 (при типовом расстоянии $s=0.1\div0.2$ м).

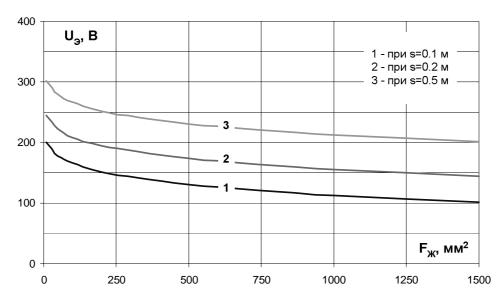


Рис. 6. Напряжение на экране однофазного кабеля (в симметричном режиме) в схеме рис. 7 в зависимости от сечения жилы $F_{\scriptscriptstyle \mathcal{K}}$ и расстояния s между кабелями (между центрами) соседних фаз. Напряжение дано в расчете на длину кабеля 1000 м и ток в жиле 1000 А. Сечение экрана $F_{\rm p}$ любое, экран заземлен только на одном конце кабеля.

Напряжение на экране в случае, когда он заземлен только в одном из концов (схема рис.7), можно определить на основе данных рис.6 с использованием выражения

$$U_{\ni} = U_{\ni}^{puc.6} \cdot \frac{L_{K}}{1000} \cdot \frac{I_{\mathcal{K}}}{1000}.$$

 $U_{\ni} = U_{\ni}^{~~puc.6} \cdot \frac{L_{\scriptscriptstyle K}}{1000} \cdot \frac{I_{\scriptscriptstyle \mathcal{K}}}{1000} \,.$ Например, для кабеля $F_{\scriptscriptstyle \mathcal{K}} = 500~{\rm mm}^2$, $s=0.2~{\rm m}$ по рис.6 получим $U_{\ni}^{~~puc.6} = 175$ В, а результаты расчетов напряжений на экране сведены в таблицу ($L_{\kappa} = 500 \text{ м}$).

Рассматриваемый режим	Величина напряжения на	Допустимая величина
т ассматриваемый режим	экране	напряжения на экране
Нормальный режим $I_{\mathcal{K}} = 500$ А	$U_{\ni} = 175 \cdot \frac{500}{1000} \cdot \frac{500}{1000} \approx 44 \text{ B}$	$U_{3}^{AO\Pi-1} = 24 \text{ B}$
Трехфазное короткое замыкание в сети за кабелем $I_{\mathcal{K}} = 10000$ А	$U_{9} = 175 \cdot \frac{500}{1000} \cdot \frac{10000}{1000} = 875 \text{ B}$	$U_{\mathfrak{I}}^{\text{ИЛИ}}$ = 5000 В

Если для конкретного кабеля возможно прикосновение человека незаземленному концу экрана, то в качестве допустимого напряжения на экране необходимо принять то напряжение, которое отвечает нормам безопасности, т.е. $U_{\ni} \leq U_{\ni}^{AO\Pi-1}$

Если для конкретного кабеля исключено прикосновение человека к экрану, то в качестве допустимого напряжения на экране необходимо принять то напряжение, которое отвечает прочности изоляции экрана, т.е. во всех режимах кабеля, имеющего незаземленный конец экрана, должно выполняться условие $U_{\ni} \leq U_{\ni}^{\square O\Pi - 2}$.

Из таблицы видно, что для рассмотренного кабеля в нормальном режиме отмеченное условие безопасности не выполняется, т.е. экран кабеля обязательно заземлять и в начале, и в конце кабеля.

Напряжение на экране при трехфазном коротком замыкании заметно больше такового в нормальном режиме, и с точки зрения прочности изоляции экрана всегда должно проверяться.

Перед вводом в эксплуатацию изоляцию экранов кабелей 6-500 кВ испытывают постоянным напряжением 5 кВ, при времени воздействия примерно 1 минута. Поэтому можно оценочно считать, что для изоляции экрана кабелей 6-10 кВ на время короткого замыкания в сети допустимо напряжение промышленной частоты, действующее значение которого составляет $U_{\mathfrak{I}}^{\text{доп-2}} = 5000$ В (с учетом необходимого запаса оно должно быть несколько меньше).

Итак, при возможности прикосновения человека к экрану рассмотренный кабель длиной 500 метров должен иметь экран, заземленный и в начале, и в конце. При невозможности прикосновения человека к экрану рассмотренный кабель длиной 500 метров можно эксплуатировать с экраном, заземленным лишь в одном из концов (рис.7).

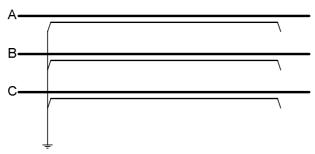


Рис. 7. Заземление экранов группы из трех однофазных кабелей с одной стороны.

3. Отличие способов заземления экранов кабелей 6-10 кВ и 110-500 кВ

В [1] были приведены результаты расчетов для трехфазной группы однофазных кабелей 110 кВ длиной 8.1 км, указывалось на то, что напряжение на незаземленном конце экрана в симметричном режиме составляет 0.88 В на каждый ампер тока жилы, а при однофазном коротком замыкании — 5.8 В на каждый ампер тока жилы, т.е. существенно выше, чем в симметричном режиме. Поэтому для кабелей 110-500 кВ в сетях с эффективно или глухо заземленной нейтралью расчетным случаем, определяющим обустройство экранов, является лишь режим однофазного короткого замыкания.

В сетях с изолированной и компенсированной нейтралью 6-10 кВ (или 6-35 кВ) однофазное повреждение изоляции сопровождается протекаем в кабеле токов, значительно меньших токов трехфазного короткого замыкания. Поэтому в сетях 6-10 кВ расчетным случаем, определяющим обустройство экранов, является лишь режим трехфазного короткого замыкания.

Сделанные выводы относительно расчетного случая можно подтвердить при помощи данных таблицы, позволяющей определить напряжение в разземленном конце экрана в схеме рис.7. В этой таблице среди различных коротких замыканий самый большой коэффициент имеет место при однофазном

коротком замыкании K(1), чуть меньший для случая K(1,1), а самые маленькие коэффициенты — в случаях K(2) и K(3). Поскольку в сетях 110-500 кВ токи однофазного короткого замыкания близки по величине к токам трехфазного K(3), то наибольшее напряжение на разземленном экране получается именно при K(1).

В сетях 6-35 кВ токи однофазного замыкания на землю малы по сравнению с токами K(1,1), K(2), K(3) и, поэтому, K(1) не является расчетным. В случае K(1,1) токи в земле практически отсутствуют $\dot{I}_3 \approx 0$, т.е. случаи K(1,1), K(2), K(3) оказываются равноправными с точки зрения коэффициента, определяющего напряжение на экране. Так как максимальные токи в жиле кабеля бывают при K(3), то, несмотря на равенство коэффициентов, расчетным в сетях 6-35 кВ все же является случай трехфазного короткого замыкания.

Режим	Допущения	Формулы для напряжения	Наибольший коэффициент
нормальный	$\dot{I}_{\mathcal{K}A} + \dot{I}_{\mathcal{K}B} + \dot{I}_{\mathcal{K}C} = 0$	$ \dot{U}_{\ni_{A}} = (\dot{Z}_{\mathscr{K}\ni} - \dot{Z}_{K}) \dot{I}_{\mathscr{K}A} \dot{U}_{\ni_{B}} = (\dot{Z}_{\mathscr{K}\ni} - \dot{Z}_{K}) \dot{I}_{\mathscr{K}B} \dot{U}_{\ni_{C}} = (\dot{Z}_{\mathscr{K}\ni} - \dot{Z}_{K}) \dot{I}_{\mathscr{K}C} $	$\dot{Z}_{_{\mathcal{M} \ni}} - \dot{Z}_{_{K}}$
К(1) (в фазе «А»)	$\dot{I}_{\mathcal{K}B}=0,\ \dot{I}_{\mathcal{K}C}=0$	$egin{align} \dot{U}_{ ijA} &= \dot{Z}_{ ijA}\dot{I}_{ ijA} \ \dot{U}_{ ijB} &= \dot{Z}_{K}\dot{I}_{ ijKA} \ \dot{U}_{ ijC} &= \dot{Z}_{K}\dot{I}_{ ijKA} \ \end{array}$	$\dot{Z}_{_{\mathcal{K}\ni}}$
К(1,1) (в фазах «В,С»)	$\dot{I}_{_{\mathcal{K}\!\!A}}=0$ $\dot{I}_{_{\mathcal{K}\!\!B}}+\dot{I}_{_{\mathcal{K}\!\!C}}=\dot{I}_{_{3}},$ где $\dot{I}_{_{3}}$ - ток в земле	$ \dot{U}_{\ni A} = \dot{Z}_{K} \dot{I}_{3} \dot{U}_{\ni B} = (\dot{Z}_{\mathscr{K}\ni} - \dot{Z}_{K}) \dot{I}_{\mathscr{K}B} + \dot{Z}_{K} \dot{I}_{3} \dot{U}_{\ni C} = -(\dot{Z}_{\mathscr{K}\ni} - \dot{Z}_{K}) \dot{I}_{\mathscr{K}B} + \dot{Z}_{\mathscr{K}\ni} \dot{I}_{3} $	$\dot{Z}_{_{\mathcal{M} \ni}} - \dot{Z}_{_{K}}$ и прибавка от тока в земле с коэффиц. $\dot{Z}_{_{K}}$
К(2) (в фазах «В,С»)	$\dot{I}_{\mathcal{K}A} = 0$ $I_{\mathcal{K}B} + \dot{I}_{\mathcal{K}C} = 0$	$ \dot{U}_{\ni A} = 0 \dot{U}_{\ni B} = (\dot{Z}_{\mathcal{K}\ni} - \dot{Z}_{K}) \dot{I}_{\mathcal{K}B} \dot{U}_{\ni C} = -(\dot{Z}_{\mathcal{K}\ni} - \dot{Z}_{K}) \dot{I}_{\mathcal{K}B} $	$\dot{Z}_{_{\mathcal{M} \ni}} - \dot{Z}_{_{K}}$
K(3)	$\dot{I}_{\mathcal{K}A} + \dot{I}_{\mathcal{K}B} + \dot{I}_{\mathcal{K}C} = 0$	$ \dot{U}_{\ni A} = (\dot{Z}_{\mathscr{K}\ni} - \dot{Z}_{K}) \dot{I}_{\mathscr{K}A} \dot{U}_{\ni B} = (\dot{Z}_{\mathscr{K}\ni} - \dot{Z}_{K}) \dot{I}_{\mathscr{K}B} \dot{U}_{\ni C} = (\dot{Z}_{\mathscr{K}\ni} - \dot{Z}_{K}) \dot{I}_{\mathscr{K}C} $	$\dot{Z}_{_{\mathcal{K}\ni}}-\dot{Z}_{_{\mathcal{K}}}$

И в сетях 6-10 кВ, и в сетях 110-500 кВ в случае заземления экранов по концам кабеля в экранах протекают значительные токи. Эффективными способами снижения токов в экранах могут быть названы:

- заземление экранов только в одном из концов кабеля (рис.7);
- деление экрана на секции и соединение секций через транспозиционные коробки (рис.8);
- деление экрана на несоединенные друг с другом секции, в каждой из которых экран заземлен только один раз (рис.9);

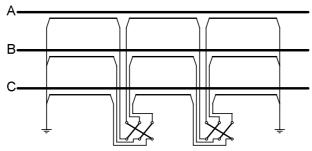


Рис. 8. Схема соединения экранов группы из трех однофазных кабелей с изоляцией из сшитого полиэтилена в случае, когда экран разделен на секции, соединенные через узлы транспозиции.

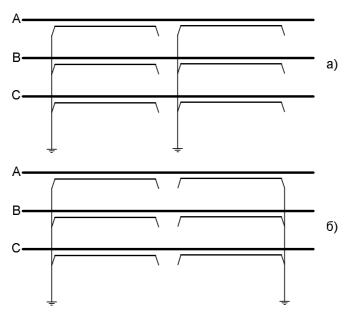


Рис. 9. Схема соединения экранов группы из трех однофазных кабелей с изоляцией из сшитого полиэтилена в случае, когда экран разделен на секции, заземленный один раз.

Окончательный выбор способа борьбы с токами в экранах зависит от допустимого напряжения на изоляции экрана в расчетном случае. Если схема рис.7 не обеспечивает условие $U_{\ni} \leq U_{\text{доп}}$, то приходится выбирать между рис.8 и рис.9. Следует отметить, что схема рис.9,б безопаснее для персонала, чем рис.9,а, и, кроме того, по концам кабеля уже есть заземляющие устройства, а на трассе кабеля их надо специально организовывать.

В схемах рис.8-9 необходимо предусматривать разделение экранов на то или иное число секций. Разумеется, предпочтение будет отдано тому способу обустройства экранов, который потребует меньшего числа секций.

В [1] для кабеля 110 кВ было показано, что в случае применения всего одного цикла транспозиции (две транспозиционные коробки, три секции экранов) при расчетном однофазном коротком замыкании наводимое на экран напряжение снизится с 5.8 В до 0.195 В на каждый ампер тока жилы. Если бы для кабеля 110 кВ применялась схема типа рис.9, то чтобы достичь напряжения 0.195 В пришлось бы разрезать экран на K = 5.8/0.195 = 30 секций (на рис.9 показано всего K = 2 секции)! Как видно, в кабелях 110-500 кВ транспозиция является наиболее простым решением по снижению токов в экранах.

Журнал «Новости Электротехники», №5(47), 2007

Для кабеля 6-10 кВ при расчетном трехфазном коротком замыкании наводимое на экран напряжение в случае применения N полных циклов транспозиции (на рис.8 показано N=1) составит

$$U_{\ni} = \frac{U_{\ni}^{puc.6}}{3N} \cdot \frac{L_{K}}{1000} \cdot \frac{I_{\mathcal{K}}}{1000},$$

а в случае деления экрана на K секций (экран надо разрезать K-1 раз):

$$U_{\ni} = \frac{U_{\ni}^{puc.6}}{K} \cdot \frac{L_K}{1000} \cdot \frac{I_{\mathcal{K}}}{1000}.$$

Для кабелей 6-10 кВ применение транспозиции (3N секций экранов) одинаково эффективно с простым делением экрана на K = 3N однократно заземленных секций. Применение дорогостоящих транспозиционных коробок, соединяющих соседние секции между собой, в сетях 6-10 кВ не обязательно.

4. Однофазное замыкание на землю в кабельной сети 6-10 кВ

Особым расчетным случаем для проверки токов и напряжений в экранах и, в конечном счете, выбора способа их заземления, является однофазное повреждение изоляции в сети 6-10 кВ (однофазное замыкание на землю).

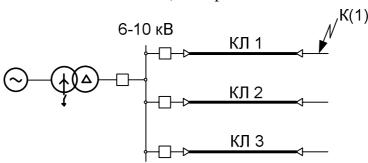


Рис.10. Типовая схема кабельной сети 6-10 кВ.

При возникновении однофазного замыкания на землю за кабелем (вблизи от нагрузки — рис. 10) весь емкостный ток сети $I_{\rm EMK}$ проходит по жиле соответствующего кабеля, создавая в его экране, заземленном по концам, ток, близкий по величине к $I_{\rm EMK}$.

Предположим, что в сети 6-10 кВ имеется большое число кабельных линий, и ток $I_{\rm EMK}$ составляет десятки или даже сотни ампер, но при этом у каждого кабеля сравнительно малые сечения жилы и экрана (а значит — малые допустимые токи). Тогда за время устранения замыкания на землю, которое может составлять несколько часов, вероятен нерасчетный разогрев током $I_{\rm EMK}$ экрана того кабеля, за которым в сети имеется повреждение изоляции (на рис.10 это КЛ 1).

Заключение

В однофазных кабелях 6-10 кВ, как и в однофазных кабелях 110-500 кВ, необходимо предъявлять повышенное внимание к выбору способа заземления экранов и проводить соответствующие обосновывающие расчеты.

[1] Дмитриев М.В., Евдокунин Г.А. Однофазные силовые кабели 6-500 кВ//«Новости Электротехники», №2(44), 2007 г.